SPLAT-MS: Single Particle Laser Ablation Time-of-flight Mass Spectrometer

AKNOLEDGMENTS

Jian Wang BNL Klaus Muller SUNYSB

Gunner Senum BNL Peter Imrich SUNYSB

Jeong-Ho Han BNL Wei Zhu SUNYSB

Logan Chieffo SHU Ray Mugno SUNYSB

Tim Onasch BNL

Susan Oatis SHU Paul O'Connor BNL

Mike Alexander PNNL Jack Fried BNL

OUTLINE

- Single particle MS basics
- SPLAT-MS performance
- SPLAT-MS beyond size and composition
- Single spore M-D characterization

- SpectraMiner data analysis and visualization
- The interactive dendogram
- Exploring particle data

Single Particle Properties Real-Time Measurements

Here today

- Size
- Composition
- Density (effective density)
- Water uptake

Coming soon

- Shape
- Optical scattering, phase function, fluorescence
- Quantitative soot content

WHY?

Particles come internally and externally mixed

Internally mixed

Single Particle Mass Spectrometry: Basics

INLET

DETECTION

AERODYNAMIC SIZING

MASS SPECTRUM OF AMMONIUM SULFATE/SUCCINIC ACID PARTICLE

SPLAT-MS PHOTO

FIELD DEPLOYMENTS

TX 2000 Air Quality Study Houston TX August-September 2000

Aerosol Characterization Experiment Cheju Island Korea April 2001

PM2.5 Technology Assessment and Characterization Study, NY July 2001

Mercedes A170 Engine Characterization, NTRC Oak Ridge TN February 2003

4 Little Atmospheric Particles

ABLATION WILL NEVER BE QUANTITATIVE & WE WILL NEVER IDENTIFY ORGANICS BY NAME

WE CAN DO BETTER

SEPARATE IONIZATION AND EVAPORATION

SEPARATION OF EVAPORATION FROM IONIZATION

Application to Automobile Exhaust Emission

Size Distributions of Particles Observed by SPLAT-MS

Spectra of a Few Little Exhaust Particles

Spectra of a Few Little Exhaust Particles

Spectra of a Few Little Exhaust Particles

Size, Composition & Density

Density of 200nm Particles

SOOT

Individual soot particles measure 10-60 nanometers wide; aggregates are 1,000 nm (1 micron) wide. (Photo from 1997's MSL-1 mission.)

Size Density Relationship for Soot Particles

Size Density Relationship for Soot Particles

BIOLOGICAL WARFARE

Detection of Biological Warfare agents requires high sensitivity & selectivity

The ultimate detection limit

SINGLE SPORE

High selectivity through

M-D characterization

SENSITIVITY REQUIREMENT

Biological Agent *Detection Goal

Botulinum Toxin 200 org./ cm³ second

Yersinia Pestis 200 org./ cm³ second

Coxiella Burnetii 200 org./ cm³ second

Rift Valley Fever Virus 40 org./ cm³ second

Bacillus Anthracis 40 org./ cm³ second

ESTIMATED SENSITIVITY FOR SINGLE PARTICLE MASS SPECTROMETER

~1 org./ cm³ second

^{*}Based on a typical soldier breathing 1000 liters/hour

SINGLE SPORE ANALYSIS

- Maximum sensitivity
- Zero background
- Stepwise identification and discrimination on the basis of:
 - > Size
 - > Shape
 - ➢ Bio-fluorescence
 - Mass spectral signature
 - Antibody reactivity
 - Select purify and collect individual spores for microscopic, DNA, and other analysis

5-D CHARACTERIZATION

SHAPE & FLUORESCENCE

SCHEMATIC of a FIELD DEPLOYABLE INSTRUMENT

WHAT DO WE DO WITH ALL THE DATA?

- We can generate Gb of data each day.
- The data are detailed and if properly mined can provide insight into understanding aerosol sources and fate.
- So much information for such a little brain.
- We do not want to reduce (loose) the richness of the data.
- We cannot grow the brain
- We must develop tools that will make it possible to navigate through the data with ease.
- The tool must provide a multi-level view all the way from the individual particle to the entire data set with a road in-between.

The Dendogram or Classification Tree

Composition Data with High Temporal Resolution

Data Mining with **SpectraMiner**

CONCLUSION

- Compact SPMS
- ▶ ~50 particles/sec
- ▶ 20nm to 3.5micron
- Size
- Composition by CI
- Optical properties
- Density
- Hygroscopicity
- ▶ Shape
- ▶ Fluorescence

- Real-time analysis and visualization
- Expert driven data classification
- Comprehensive data analysis and visualization of gases, MS, size distribution, etc.